Hallar la derivada de:
1) f(x) = (5x²+3x) / (2x+8)
2) g(x) = L(x) + 2/(x+1)
3) h(x) = (5x+3) / (x.e^x)
(L = logaritmo neperiano [en base e])
f(x)=y=(5x²+3x) / (2x+8)
dy=((10x+3)(2x+8)-(5x²+3x)(2))/(2x+8)^2
resolviendo
dy=10x^2+80x+24/(2x+8)^2
2) g(x) = L(x) + (2/x+1)
g'(x) =L'(x)+ 2(x^-1)+0
g'(x)=L'(x)-2/x^2
3) h(x) = (5x+3) / (x.e^x)
dy=5(x.e^x)-(5x+3)(e^x+ x.e^x) / (x.e^x)^2
dy=-(5(x^2)e^x+3xe^x +3e^x)/(x.e^x)^2