30
El siguiente triángulo ABC es rectángulo en B:
B
x cm
A
30°
10 cm
¿Cual es el valor de x?
(A
5V3
B
197
2
с
2013
3
(D
20 - vB


30 El Siguiente Triángulo ABC Es Rectángulo En B B X Cm A 30 10 Cm Cual Es El Valor De X A 5V3 B 197 2 С 2013 3 D 20 VB class=

Respuesta :

Respuesta:

[tex]5 \sqrt{3}[/tex]

Explicación paso a paso:

Para resolverlo hay que usar el teorema del seno

que es

[tex] \frac{a}{ \sin(a) } = \frac{b}{ \sin(b) } = \frac{c}{ \sin(c) } [/tex]

a,b y c son los lados y lo que están en los senos son los ángulos opuestos a esos lados.

El ángulo opuesto al lado de x no tiene valor, por lo que primero hay que calcularlo.

Para hallarlo se sabe que en todo triángulo la suma de sus ángulos internos es 180°

Al ser rectángulo el triángulo un lado es 90° el otro ángulo te lo da, que es 30° entonces armó la ecuación

180 = 90 + 30 + x

180 = 120 + x

180 - 120 = x

60 = x

entonces el ángulo que nos falta mide 60° ahora con el teorema del seno calculamos el lado x

[tex]\frac{10}{ \sin(90) } = \frac{x}{ \sin(60) } [/tex]

el seno de 90 es 1 y el de 60 es raíz de 3 sobre 2

[tex]\frac{10}{ 1 } = \frac{x}{\frac{ \sqrt{3} }{2} } [/tex]

paso la raíz de 3 sobre dos del otro lado multiplicando

[tex]10 \times \frac{ \sqrt{3} }{2} = x[/tex]

simplificó el 10 con el 2

[tex]5 \sqrt{ 3} = x[/tex]