La diferencia entre las longitudes de los catetos de un triángulo rectángulo es igual 16.3 cm, si la hipotenusa mide una longitud de 81.5 cm. ¿Cuánto vale el área del triángulo?

Por favor con procedimiento


Respuesta :

Respuesta:

El area del triangulo es 1594,165

Explicación paso a paso:

Datos:

cateto 1 = a

cateto 2 = b

hipotenusa= 81,5

Teorema de pitagoras:

a² + b² = (hipotenusa)²

a² + b² = (81,5)²

a² + b² = 6642,25

La diferencia entre las longitudes de los catetos de un triángulo rectángulo es igual 16.3 cm

a - b = 16,3

Elevamos todo al cuadrado

(a - b)² = (16,3)²

a²-2ab+b² = 265,59

a²+b² - 2ab =  265,59

6642,25 - 2ab =  265,59

- 2ab =  265,59 - 6642,25

- 2ab = -6376,66

2ab = -6376,66/-2

ab = 3188,33

Hallamos area del triangulo

Area del Triangulo = [(cateto 1)*(cateto 2)]/2

Area del Triangulo = [a*b]/2

Area del Triangulo = 3188,33/2

Area del Triangulo = 1594,165