En una progresión geométrica de 5 términos positivos, la razón de la misma es igual a la cuarta parte del primer término. Si la suma de los dos primeros términos es 24. Encuentre los términos de la progresión
⭐Tenemos dos datos, respecto a la razón y la suma de los dos primeros términos.
La razón es igual a la cuarta parte del primer término:
r = a₁/4
Expresamos la suma de la progresión geométrica:
[tex] Sn=\frac{a_{1*(r^{n}-1)}}{r-1} [/tex]
[tex] 24=\frac{a_{1*(r^{2}-1)}}{r-1} [/tex]
24 · (r - 1) = a₁ · (r² - 1)
Sustituimos:
24 · (a₁/4 - 1) = a₁ · [(a₁/4)² - 1]
6a₁ - 24 = a₁ · (a₁²/16 - 1)
6a₁ - 24 = a₁³/16 - a₁
a₁³/16 - 7a₁ + 24 = 0
El resultado de la ecuación es:
a₁ = -12 / a₁ = 8 / a₁ = 4
Si a₁ = 8, la razón es igual a: r = a₁/4 = 8/4 = 2
Comprobamos:
[tex] Sn=\frac{8*(2^{2}-1)}{2-1} =24 [/tex]
TÉRMINO 1: a₁ = 8
TÉRMINO 2: a₂ = a₁ · r = 8 · 2 = 16
TÉRMINO 3: a₃ = a₁ · r² = 8 · 2² = 32
TÉRMINO 4: a₄ = a₁ · r³ = 8 · 2³ = 64
TÉRMINO 5: a₅ = a₁ · r⁴ = 8 · 2⁴ = 128