Respuesta :
Ha HOla espero te sirva y xfa elige mejor respuesta!!!
1 Separa los dígitos de dos en dos. La mejor manera de explicar cómo se hace una raíz cuadrada es con un ejemplo. Vamos a hacer la raíz cuadrada del número 64.253. El número a partir de ahora se llamará radicando, el símbolo de la raíz será radical y cada cajetilla que abramos para hacer operaciones renglón de la raíz. El primer paso consiste en separar los dígitos del radicando de dos en dos de derecha a izquierda. Si hubiera decimales hay que dividir primero los enteros de derecha a izquierda y después la parte decimal a la inversa, de izquierda a derecha. En este caso no pueden quedar dígitos individuales, por lo que añadiremos un cero cuando lo necesitemos.
2 Busca un número que multiplicado por sí mismo se acerque a tu primer dígito. Hay que buscar un número cuyo cuadrado (multiplicar por si mismo) se acerque, nunca pase, la primera cifra del radicando, que en nuestro caso es 6. El número que encontremos lo apuntamos en el segundo renglón de la raíz, llamados auxiliares porque nos ayudan a descifrarla. La primera incógnita es 2, que al multiplicarse por si mismo da 4. Ese número hay que restarlo ahora al radicando (6-4) y anotar debajo el resultado (2).
3 Baja los otros dos dígitos y sigue la operación. Sigue estos pasos: Baja las dos siguientes cifras del radicando (42), sube la primera incógnita a la primera casilla (2) y escribe su doble en la tercera auxiliar. Una vez realizado esto seguimos con la operación. Vuelve a separar los dígitos del radicando que nos queda (242) dejando fuera la última cifra (2). Ahora divide el primer grupo de dígitos entre el número que haya en la tercera auxiliar (24/4). La cifra resultante la debes poner junto al dígito del tercer auxiliar y multiplicar por esa misma cifra (46X6) y comprobar que el resultado no es superior al radicando que tenemos. Si lo supera, debes bajar un número la incógnita.
4 Baja más dígitos y sube la segunda incógnita arriba. En nuestro ejemplo 46X6 son 276, lo que supera a 242, por lo que debemos utilizar el 5, y la operación es 45X5=225. Resta el resultado al radicando: 242-225=17. Ahora baja los siguientes dos dígitos (53) y después sube el 5 junto al 2.
5 En el cuarto renglón auxiliar escribe el doble de lo que tenga el primero. Llegados a este paso tenemos el radicando 1753 y en el cuarto auxiliar hay que poner el doble de los dos dígitos ya resueltos (25), que sería 50.
6 Separa el radicando y divide por la última incógnita. Volvemos a descartar el último número del radicando y nos queda 175. Lo volvemos a dividir por lo que ponga en el cuarto auxiliar, 175/50 y el resultado es 3 (hay que descartar los decimales). Volvemos a escribir la incógnita y multiplicar por ella misma: 503X3=1509.
7 Vuelve a restar. Restamos el resultado al radicando y nos queda 244. 8 Si no hay más dígitos se acaba la raíz cuadrada. La incógnita la volvemos a subir al renglón raíz y como ya no nos quedan más dígitos en el radicando, la raíz cuadrada se acaba. Si en el radicando hubiera decimales, deberiamos poner una coma junto al 253 y seguir resolviendo como los pasos anteriores.
1 Separa los dígitos de dos en dos. La mejor manera de explicar cómo se hace una raíz cuadrada es con un ejemplo. Vamos a hacer la raíz cuadrada del número 64.253. El número a partir de ahora se llamará radicando, el símbolo de la raíz será radical y cada cajetilla que abramos para hacer operaciones renglón de la raíz. El primer paso consiste en separar los dígitos del radicando de dos en dos de derecha a izquierda. Si hubiera decimales hay que dividir primero los enteros de derecha a izquierda y después la parte decimal a la inversa, de izquierda a derecha. En este caso no pueden quedar dígitos individuales, por lo que añadiremos un cero cuando lo necesitemos.
2 Busca un número que multiplicado por sí mismo se acerque a tu primer dígito. Hay que buscar un número cuyo cuadrado (multiplicar por si mismo) se acerque, nunca pase, la primera cifra del radicando, que en nuestro caso es 6. El número que encontremos lo apuntamos en el segundo renglón de la raíz, llamados auxiliares porque nos ayudan a descifrarla. La primera incógnita es 2, que al multiplicarse por si mismo da 4. Ese número hay que restarlo ahora al radicando (6-4) y anotar debajo el resultado (2).
3 Baja los otros dos dígitos y sigue la operación. Sigue estos pasos: Baja las dos siguientes cifras del radicando (42), sube la primera incógnita a la primera casilla (2) y escribe su doble en la tercera auxiliar. Una vez realizado esto seguimos con la operación. Vuelve a separar los dígitos del radicando que nos queda (242) dejando fuera la última cifra (2). Ahora divide el primer grupo de dígitos entre el número que haya en la tercera auxiliar (24/4). La cifra resultante la debes poner junto al dígito del tercer auxiliar y multiplicar por esa misma cifra (46X6) y comprobar que el resultado no es superior al radicando que tenemos. Si lo supera, debes bajar un número la incógnita.
4 Baja más dígitos y sube la segunda incógnita arriba. En nuestro ejemplo 46X6 son 276, lo que supera a 242, por lo que debemos utilizar el 5, y la operación es 45X5=225. Resta el resultado al radicando: 242-225=17. Ahora baja los siguientes dos dígitos (53) y después sube el 5 junto al 2.
5 En el cuarto renglón auxiliar escribe el doble de lo que tenga el primero. Llegados a este paso tenemos el radicando 1753 y en el cuarto auxiliar hay que poner el doble de los dos dígitos ya resueltos (25), que sería 50.
6 Separa el radicando y divide por la última incógnita. Volvemos a descartar el último número del radicando y nos queda 175. Lo volvemos a dividir por lo que ponga en el cuarto auxiliar, 175/50 y el resultado es 3 (hay que descartar los decimales). Volvemos a escribir la incógnita y multiplicar por ella misma: 503X3=1509.
7 Vuelve a restar. Restamos el resultado al radicando y nos queda 244. 8 Si no hay más dígitos se acaba la raíz cuadrada. La incógnita la volvemos a subir al renglón raíz y como ya no nos quedan más dígitos en el radicando, la raíz cuadrada se acaba. Si en el radicando hubiera decimales, deberiamos poner una coma junto al 253 y seguir resolviendo como los pasos anteriores.