Respuesta :
La forma en que lo veo es que puede acomodar 15*15, pero como debe haber al menos 1 libro en cada repisa debes quitar uno, así que 15*14=210 como son 2 repisas se duplica la posibilidad del acomodo, por lo que me parece que puede colocarlos de 410 formas distintas.
Bueno, probando con casos pequeños te darás cuenta que puedes usar (n-2m+1)n!, dónde "n" es la cantidad de libros y "m" la mínima cantidad por repisa, dónde m > 0 y 2m ≤ n, para dos repisas, ya que tan solo imagina que si la cantidad de libros en la primera repisa es "a" y en la segunda es "b" , entonces contando de izquierda a derecha el primer libro de la primera repisa tendrá la posición 1, el segundo la posición 2, etc, y el primer libro de la segunda repisa tendrá la posición "a+1" y el segundo "a+2", etc, entonces si permutas esos "a+b"(n) y lo multiplicas por el número de casos dependiendo del mínimo de libros por repisa(n-2m+1), ese será el total de formas a colocar los libros.